Information about authors

- 1. *Dimitriyeva Anastasia Ivanovna*, Candidate of Veterinary Sciences, Senior lecturer of the epizootologiya, parasitology and veterinary and sanitary examination department, Chuvash State Agricultural Academy, 29, K. Marx St.; Cheboksary, Chuvash Republic, 428003; e-mail: nastena_dim@mail.ru, ph. 8-927-844-70-80;
- 2. *Tikhonova Galina Petrovna*, Candidate of Veterinary Sciences, Head of epizootologiya, parasitology and veterinary and sanitary examination department, Chuvash State Agricultural Academy, 29, K.Marx St.;Cheboksary, Chuvash Republic, 428003; e-mail: galina Tikchonova_@mail.ru, ph. 8-917-651-86-31;
- 3. *Ivanova Raisa Nikolaevna*, Candidate of Agricultural. Sciences, Associate Professor of the biotechnologies and processing of agricultural production, Chuvash State Agricultural Academy, 29, K. Marx St.;Cheboksary, Chuvash Republic, 428003; e-mail: raisanikolaevn@mail.ru of ph. 8-917-661-29-10.

УДК619:615.37+619.616-097

ВЛИЯНИЕ ИММУНОСТИМУЛЯТОРОВ НА ФОРМИРОВАНИЕ ИММУНИТЕТА ПОРОСЯТ

В.В. Кузнецов, Е.А. Кузнецова

Чувашская государственная сельскохозяйственная академия 428003, г. Чебоксары, Российская Федерация

Аннотация. Изучено фармакологическое и иммуностимулирующее действие препаратов ЯП-2 и ЯП-3 с целью применения их против рожи при вакцинации свиней в качестве растворителей вакцины. При изучении морфологии крови выявлено снижение базофилов у поросят первой опытной группы после первой вакцинации на 7-е сутки — на 0.4 %, по сравнению с фоновым показателями. Во второй опытной группе количество базофилов было на уровне фоновых данных. В контрольной группе этот показатель после первой вакцинации на 7-е и 14-е сутки был аналогичным фоновым показателям, а затем снижался на 21-е, 28-е сутки и после повторной вакцинации на 7-е и 25-е сутки на 0.2 % повысился в отличие от фоновых данных. При применении иммуностимуляторов ЯП-2 и ЯП-3 антитела выявлены на 7-е сутки в контрольной группе ($\log_2 1.32\pm0.18$), а в 1-ой 2-ой опытной группах — $1.32\pm0.20-1.56\pm0.16$. На 2-сутки эти показатели равнялись в контрольной группе — 2-сутки в контрольной группе — 2-сутки в контрольной группе — 2-сутки в гой и 2-ой опытной 2-сутки в гой пытной группах — 2-сутки в контрольной группе — 2-сутки в гой пытной группах — 2-сутки в контрольной группе — 2-сутки в гой пытной группах — 2-сутки в контрольной группе — 2-сутки в гой пытной группах — 2-сутки в гой пытител при применении иммуностимулятора ЯП-3 в сравнении были выше на одно разведение, чем при введении ЯП-2. Защитная активность сыворотки крови контрольных поросят после вакцинации против рожи свиней установлена на 28 сутки после первой иммунизации и на 2-сутки после ревакцинации.

Ключевые слова: иммуностимуляторы ЯП-2 и ЯП-3, поросята, вакцинация, рожа свиней, защитная активность.

Введение. Иммунная система – одна из важнейших гомеостатических систем организма, которая во многом определяет здоровье животных. Основной функцией ее является поддержание генетического постоянства организма. Система современных плановых профилактических и оздоровительных мероприятий в стране обеспечивает снижение заболеваемости сельскохозяйственных животных инфекционными болезнями. Однако отмечается их недостаточная эффективность при ряде зооантропозоонозных инфекций [1, 2, 5], в том числе и при роже свиней [4, 5]. Необходимость изучения проблем иммуностимуляции в ветеринарии объясняется тем, что при современной системе ведения животноводства животные нередко находятся в состоянии низкого иммунного статуса и чувствительны к различного рода заболеваниям. Умелое управление системой иммунитета приносит животноводству большой экономический эффект. В настоящее время иммуностимулятор определяется как фактор, который путем избирательного действия на отдельные этапы иммунного ответа вызывает активизацию процессов связывания и отработки антигенного материала, созревания иммунокомпетентных клеток, усиления их функциональных свойств, а также различных регуляторных механизмов (гормонального и медиаторного типа) [2, 3, 5].

Особенно часто как в личных подсобных, так и в специализированных хозяйствах возникает заболевание – рожа свиней. Источником возбудителя рожи являются больные свиньи, выделяющие возбудитель с мочой и калом, и клинически здоровые свиньи — бактерионосители. При латентной форме бактерии рожи, обычно локализующиеся в миндалинах и кишечных фолликулах, могут при стрессе, особенно под влиянием высокой температуры и при белковой недостаточности, вызвать клиническое проявление болезни. В результате этого эпизоотические вспышки рожи в хозяйствах чаще возникают эндогенно, без заноса возбудителя извне.

В целях формирования более напряженного иммунного ответа на вакцинацию свиней против рожи нами были испытаны иммуностимуляторы ЯП-2 и ЯП-3 в качестве растворителей вакцины.

Целью настоящей работы являлось изучение неспецифической и специфической резистентности организма поросят при введении иммуностимуляторов ЯП-2 и ЯП-3.

В соответствии с этим были определены следующие задачи исследований:

- 1. Изучить гематологические показатели организма поросят при вакцинации против рожи свиней с использованием ЯП-2 и ЯП-3 в качестве растворителей вакцины.
- 2. Установить влияние иммуностимуляторов ЯП-2 и ЯП-3 на динамику иммуногенеза и защитной активности сыворотки крови при вакцинации поросят против рожи свиней.

Материалы и методы. Исследования были проведены в ФГУП «Колос» РАСХН Цивильского района. Объектом изучения являлись поросятах-отъемышах цивильской породы 2-х месячного возраста в количестве 54 голов. В каждую группу было отобрано по 18 животных. По методу пар-аналогов сформировали три группы поросят: две опытные и одна контрольная группы. При подборе учитывали массу, возраст, пол поросят. При вакцинации поросят использовали живую сухую вакцину против рожи свиней из штамма ВР-2 (ФГУП «Ставропольская биофабрика», серия 150511).

Для контрольной группы животных вакцину растворяли в физиологическом растворе по инструкции, для первой опытной группы растворителем служил иммуностимулятор ЯП-3, для второй опытной группы - иммуностимулятор ЯП-2 из расчета 1 см 3 на одну иммунизирующую дозу. Вакцину применяли в объеме 1 см 3 для всех групп.

Исследования проводились до введения вакцины, и через каждые 7 сутки после первичной вакцинации (7, 14, 28 сутки), и после ревакцинации – на 7 и 25 сутки. Кровь для исследования брали натощак из v. cavae cranialis

Определение поствакцинальных титров антител против рожи свиней проводили в РА (реакции агглютинации), а защитную активность сыворотки крови – в пробе роста.

Результаты исследования и их обсуждение. При изучении морфологии крови выявлено снижение базофилов у поросят первой опытной группы после первой вакцинации на 7-е сутки на 0,2 %, на 14-е, 21-е и 28-е сутки – на 0,4 %, после повторной вакцинации на 7-е и 25-е сутки – также на 0,4% по сравнению с фоновыми показателями. Во второй опытной группе количество базофилов было на уровне фоновых данных. В контрольной группе этот показатель после первой вакцинации на 7-е и 14-е сутки был аналогичным фоновым показателям а затем снижался на 21-е, 28-е сутки и после повторной вакцинации на 7-е и 25-е сутки повысился на 0,2 % в отличие от фоновых данных.

Содержание эозинофилов крови поросят в первой опытной группы было ниже фоновых после первой вакцинации на 7-е сутки на 0,1%, на 14-е – 0,9 %, 21-е – на 0,4 %, 28-е – на 0,3 %, после повторной вакцинации на 7-е сутки – на 1,2 %, 25-е – на 0,4 % соответственно. Во второй опытной группе на 7-е и 21-е сутки этот показатель находился на уровне фоновых данных, а затем снижался на 14-е сутки – на 0,2 %, 28-е сутки – на 0,6 %, после повторной вакцинации на 7-е сутки – на 1,1 %, на 25-е сутки – на 0,1 % соответственно. В контрольной группе поросят после первой вакцинации на 7-е и 14-е сутки отмечалось снижение количества эозинофилов на 0,1 %, на 21-е сутки он оставался на уровне фоновых данных. На 28-е сутки после первой вакцинации отмечалось повышение на 0,3 %, после повторной иммунизации на 7-е и 25-е сутки – на 0,7 % и 0,9 % соответственно.

Количество лимфоцитов во всех исследуемых группах за время проведения опытов снижалось. На 7-е сут после первичной вакцинации у поросят первой опытной группы отмечено снижение этого показателя на 3,0%, на 21-е на -4,9%, 28-е на -3,1%, и после повторной вакцинации на 7-е сут - на 4,3% соответственно. Во второй опытной группе эти показатели были аналогичными: на 7-е сутки - на 1,9%, 21-е - на 4,9%, 28-е - на 4,4%, после повторной на 7-е сут - 5,0% соответственно. В контрольной группе установлено снижение на 7-е сут - на 1,1%, 21-е - на 2,9%, 28-е - на 4,1%, после повторной вакцинации на 7-е сут - на 8,0% соответственно от фоновых данных.

Однако на 14-е сутки после первой и 25-е сутки после повторной вакцинации было отмечено повышение лимфоцитов во всех исследуемых группах: в первой — на 2,9 % и 1,3 %, во второй — на 3,8 % и 1,0 %, в контрольной — на 1,5 % и 1,9 % соответственно.

Моноциты в первой опытной группе после первой вакцинации снижались на 7-е сутки — на 0,5 %, 14-е — на 0,3 %, 21-е и 28-е — на 0,1 %, после повторной вакцинации на 7-е сутки было отмечено повышение на 1,0 %, а на 25-е сутки снижение — на 0,7 % соответственно, в сравнении с фоновыми данными. Во второй опытной группе после первой вакцинации свиней против рожи на 7-е сутки отмечено снижение моноцитов на 0,1 %, на 14-е сутки они были на уровне фоновых данных, на 21-е и 28-е сутки произошло повышение на 0,2 %, после повторной вакцинации отмечено повышение на 7-е сутки на 1,5 %, на 25-е сутки снижение — на 0,7 % соответственно. В контрольной группе животных этот показатель после первой вакцинации повышался на 7-е сутки на 0,1 %, 14-е сутки — на 0,2 %, 28-е — на 0,4 %, на 21-е — был на уровне фоновых данных, после повторной вакцинации на — 7-е сутки повысился на 0,6 %, на 25-е сутки — на 0,1 % соответственно.

В опытных группах животных юные нейтрофилы появлялись после первой вакцинации на 7-е сутки, в контрольной группе животных – на 28-е сутки исследований. Количество юных нейтрофилов увеличилось в зависимости от сроков вакцинации. В первой опытной группе поросят отмечалось увеличение этого показателя после первой вакцинации на 7-е сутки на 0,3 %, 14-е – 0,4 %, 21-е – 1,8 %, 28-е – 0,9 %, после повторной вакцинации на 7-е сутки – на 0,3 % соответственно. Во второй опытной группе количество юных нейтрофилов повысилось на 7-е сутки на 0,2 %, 14-е – 0,5 %, 21-е – 1,1 %, 28-е – на 0,8 % после первой вакцинации и после повторной – на 7-е сутки на 0,3 %. На 25-е сутки исследований после проведения повторной вакцинации против рожи в опытных группах животных юных нейтрофилов не было выявлено. В контрольной группе поросят

увеличение этого показателя наблюдалось на 28-е сутки на 0.5 % после первой вакцинации, и на 7-е -0.8 % и на 25-е сутки — на 0.5% после повторной вакцинации.

Количество палочкоядерных нейтрофилов в первой, второй опытных и контрольной группах повышалось за все время исследований. После первой вакцинации на 7-е сутки – на 2,3%, 0,8% и 0,5%, 14-е – на 1,1%, 0,2% и 1,2%, 21-е – на 9,9%, 8,9% и 5,2%, 28-е – на 9,1%, 9,2% и 6,1%, после повторной вакцинации на 7-е сутки – на 0,3% в обеих опытных группах и на 0,8% в контрольной, на 25-е – на 1,6%, 1,0% и 0.8% соответственно.

Количество сегментоядерных нейтрофилов, наоборот, за время проведенных исследований снижалось, однако было отмечено их повышение во всех исследуемых группах на 7-е сутки после первой вакцинации в первой опытной – на 1,2 %, во второй – на 1,0 % в контрольной группе – на 0,6 % соответственно. В остальные сроки исследований отмечено снижение данного показателя в первой, второй опытных и контрольной группах поросят на 14-е сутки после первой вакцинации – на 2,8 %, 4,3 % и 1,8 %, 21-е – на 5,9 %, 5,3 % и 2,1 %, 28-е – 6,1 %, 5,2 % и 3,0 %, после повторной вакцинации на 7-е сутки – на 5,7 %, 5,3 % и 4,8 %, 25-е сутки в первой опытной группе – на 1,4 %, в контрольной – на 4,0 %, а во второй опытной имело место повышение на 1,0 %.

Наибольшее повышение количества юных нейтрофилов в опытных группах животных было отмечено на 21-е сутки после первой вакцинации, в контрольной группе — на 7-е сутки после повторной вакцинации. Наибольшее снижение количества сегментоядерных нейтрофилов было отмечено в первой опытной группе на 28-е сутки, во второй — на 21-е после первой вакцинации, в контрольной группе — на 7-е сутки после повторной вакцинации.

Титры антител на 7-е сутки после вакцинации были выявлены в контрольной группе $(1,32\pm0,18)$, в первой опытной группе $-1,56\pm0,16$, во второй опытной $-1,32\pm0,20$. На 14-е сутки эти показатели в контрольной группе составляли $1,52\pm0,14$, в первой опытной $-1,88\pm0,35$, во второй опытной $-1,72\pm0,26$. На 21-е и 28-е сутки в контрольной группе $-1,56\pm0,32$ и $2,8\pm0,12$, в первой и во второй опытной группе $-2,76\pm0,23$ и $4,12\pm0,37,\ 2,44\pm0,18$ и $3,8\pm0,25$ соответственно. Титры антител опытных поросят на 28-е сутки исследований были выше по сравнению с контрольной группой в первой опытной группе на 14,66 %, а во второй - на 13,52 % соответственно (таблица 1).

После повторной вакцинации на 7-е сутки титры антител составили в контрольной группе $3,04\pm0,48$, в первой опытной $-4,28\pm0,26$, во второй $-4,08\pm0,53$. На 25-е сутки титры антител в контрольной группе животных составили $3,4\pm0,16$, а в опытных группах поросят-отъемышей в первой $-4,76\pm0,28$, во второй $-4,28\pm0,16$ соответственно.

При применении иммуностимулятора ЯП-2 поствакцинальные титры антител были выше (увеличились в) на 1,25, а ЯП-3 – в 1,4 раза по сравнению с животными контрольной группы. При сравнительном анализе иммуностимуляторов ЯП-3 и ЯП-2 было выявлено, что титры антител в той группе, где применяли препарат ЯП-3, были выше на 7-е сутки после первичной вакцинации против рожи свиней на 18,2%, 14-е – 9,3%, 21-е – 13,1 %, 28-е – 10,8 %, после повторной вакцинации на 7-е – 10,5 % и 25-е – 11,12% соответственно.

Сроки исследования (сут)	Контрольная группа	Первая опытная группа	Вторая опытная группа
До вакцинации	0	0	0
	Первичная вак	цинация	
7	1,32±0,18	1,56±0,16	1,32±0,20
14	1,52±0,14	1,88±0,35*	1,72±0,26
21	1,56±0,32	2,76±0,23*	2,44±0,18**
28	2,8±0,12	4,12±0,37**	3,8±0,25*
	Повторная вак	цинация	
7	3,04±0,48	4,28±0,26*	4,08±0,53*
25	3,40±0,16	4,76±0,28*	4,28±0,16*

Таблица 1 – Титры антител при иммунизации поросят против рожи свиней в log₂ (M±m, n=8)

*P≤0,05, **P≤0,001

В дальнейшем было проведено изучение защитной активности сыворотки крови опытных и контрольных животных в пробе роста с эпизоотическим штаммом Erysipelothrix rhusiopathiae. Результаты исследований приведены в таблице 2.

При изучении сыворотки крови поросят в пробе роста после вакцинации против рожи свиней контрольных животных при иммунизации инструктивным методом, где в качестве растворителя применяли физиологический раствор, защитная активность сыворотки крови была выявлена только на 28-е сутки после первой иммунизации и 7-е, 25-е сутки после повторной вакцинации. Защитная активность сыворотки крови поросят-отъемышей первой опытной группы выявлена на 14-е, 21-е, 28-е после первой и 7-е, 25-е сутки после повторной вакцинации животных, а во второй опытной группе — на 21-е, 28-е после первой и 7-е, 25-е сутки после повторной вакцинации.

Таблица 2 – Защитная активность сыворотки крови поросят, с штаммом Erysipelothrix rhusiopathiae (М±m, n=8)

Срок исследования (сут)	Контрольная группа	Первая опытная группа	Вторая опытная группа	
До вакцинации	+	+	+	
Первичная вакцинация				
7	+	±	+	
14	+	ŀ	±	
21	±	ŀ	-	
28	=	ŀ	-	
Повторная вакцинация				
7	=	ŀ	-	
25	=	+	-	

⁺ рост (нет защиты); ± незначительный рост; - нет роста (защита)

Таким образом, установлена более ранняя защитная активность сыворотки крови опытных животных при применении иммуностимулятора ЯП-3 на 14-е и ЯП-2 на 21-е сутки после вакцинации.

У опытных групп защитная активность сыворотки крови была выявлена на 14, 21 и 28 сутки и 7 и 25 сутки после ревакцинации животных. При применении иммуностимулятора ЯП-3 защитная активность сыворотки крови у опытных животных была установлена в более ранние сроки.

- 1. При применении иммуностимулятора ЯП-2 поствакцинальные титры антител были выше в 1,25, а ЯП-3 –в 1,4 раза, чем у животных контрольной группы.
- 2. Установлено повышение защитной активности сыворотки крови в пробе роста при применении иммуностимуляторов ЯП-3 с 14 суток и ЯП-2 с 21 суток, а у контрольных животных с 28 суток.

Литература

- 1. Апраксина, О. В. Лечение диспепсии телят в СХПК «Рассветовский» Алатырского района ЧР / О. В. Апраксина, Е. А. Кузнецова, В. В. Кузнецов // Ученые записки Казанской государственной академии ветеринарной медицины им. Н.Э. Баумана. вакцинации. Казань, 2014. Т.219. С. 31 35.
- 2. Острикова, Э. Е., Использование биостимуляторов и пробиотиков при выращивании свиней / Э. Е. Острикова //Ветеринарная патология. 2011. № 4. С. 67-69.
- 3. Применение «Ветамекса» в промышленном свиноводстве / К. Х. Папунди [и др.] // Ветеринарный врач. 2008. N 5. C.54-57.
- 4. Петрова, Н.П Влияние иммуностимуляторов ЯП-2 и ЯП-3 на организм поросят / Н.П. Петрова, Е.А. Кузнецова, В.В. Кузнецов // Ученые записки Казанской государственной академии ветеринарной медицины им. Н.Э. Баумана. Казань, 2012. С.119-123.

Сведениея об авторах

- 1. *Кузнецов Владимир Викентьевич*, доктор ветеринарных наук, профессор кафедры морфологии акушерства и терапии, Чувашская государственная сельскохозяйственная академия, 428003, Чувашская Республика, г. Чебоксары, ул. К. Маркса, 29);
- 2. **Кузнецова Ефалия Анатольевна**, кандидат ветеринарных наук, доцент кафедры морфологии акушерства и терапии, Чувашская государственная сельскохозяйственная академия, 428003, Чувашская Республика, г. Чебоксары, ул. К. Маркса, 29; e-mail: kuz_efalia@mail.ru, 8-905-347-13-27.

THE INFLUENCE OF IMMUNE STIMULATORS ON THE FORMATION OF IMMUNITY OF PIGLETS

V.V. Kuznetsov, E.A. Kuznetsova

Chuvash State Agricultural Academy 428003, Cheboksary, Russian Federation

terms, the antibody titers in the application of the immune-stimulant of YAP -3 was higher by one dilution than with the introduction of YAP-2. Protective activity of blood serum of control animals, of pigs after vaccination against swine erysipelas installed on 28 days after the first immunization and 7 and 25 days after revaccination.

Keywords: Immune-stimulants YAP-2 and YAP-3, piglets, vaccination, erysipelas of pigs, protective activity.

References

- 1. Apraksina O.V., Kuznetsova E.A., Kuznetsov V.V. Dyspepsia treatment of calves in AIC «Rassvetovskij», Alatyrskiy region, ChR // Scientific notes of Kazan State Academy of Veterinary Medicine named after. N.E. Bauman. Kazan', 2014-t.219.- Pp. 31 35.
- 2. Ostrikova E.E. Biostimulant and probiotics use in pig growing //Veterinarnaja patologija. − 2011. − № 4. − Pp. 67-69.
- 3. Papunidi K.H., Davlethanov I.N., Punegova L.N., Zaljalov I.N., Garipov N.K. «Vetameks» use in industrial pig growing // Veterinarnyj vrach. 2008. № 5. Pp. 54-57.
- 4. Petrova N.P., Kuznetsova E.A., Kuznetsov V.V. Influence of immune-stimulants JAP-2 i JAP-3 on piglets organism /N.P. Petrova, E.A. Kuznetsova, V.V. Kuznetsov// // Scientific notes of Kazan State Academy of Veterinary Medicine named after. N.E. Bauman. Kazan', 2014. Pp..119-123.

Information about authors

- 1. *Kuznetsov Vladimir Vikentyevich*, Doctor of Veterinary Sciences, Professor. Department of Morphology and Obstetrics and Therapy, Chuvash State Agricultural Academy, 29, K.Marx St., Cheboksary, Chuvash Republic, 428003; e-mail
- 2. *Kuznetsova Evalia Anatolyevna*, Candidate of Veterinary Sciences, Associate Professor. Department of Morphology and Obstetrics and Therapy, Chuvash State Agricultural Academy, 29, K.Marx St., Cheboksary, Chuvash Republic, 428003; e-mail kuz_efalia@mail.ru,8-905-347-13-27.

УДК 636.084

ВЛИЯНИЕ КОРМЛЕНИЯ НА ИММУННЫЙ СТАТУС ОРГАНИЗМА ЖИВОТНЫХ (НАУЧНЫЙ ОБЗОР)

Ф.П. Петрянкин, А.Ю. Лаврентьев, В.С. Шерне

Чувашская государственная сельскохозяйственная академия 428003, Чебоксары, Российская Федерация

Аннотация. В статье описано значение кормления для становления неспецифической резистентности и иммунной системы организма животных. Приведены данные о влиянии отдельных питательных веществ – белков, жиров, углеводов, минеральных веществ и витаминов – на иммунный статус.

Ключевые слова: кормление, неспецифическая резистентность, иммунная система, белки, жиры, углеводы, минеральные вещества, витамины.

Полноценное кормление подразумевает поступление в организм оптимального количества белков, жиров, углеводов, минеральных солей и витаминов. Питательные вещества проходят в организме сложный путь, включающий всасывание, транспонртировку продуктов гидролиза и ресинтеза в ткани, эндогенный синтез белков, жиров и углеводов в печени и синтез веществ denovo в клетке и их утилизацию.

Кормление и иммунная система животных тесно взаимосвязаны. Желудочно-кишечный тракт — самый крупный орган иммунной системы. В кишечнике находится 2/3 части всей лимфоидной ткани, имеющейся в организме, и содержится около 80% всех клеток, вырабатывающих антитела. Такое расположение иммунных сил организма вполне понятно, поскольку именно пищеварительная система сталкивается с наибольшим количеством чужеродных веществ, в том числе и вредоносных для организма, действие которых необходимо своевременно нейтрализовать.

Иммунная система организма тесно взаимодействует с внешней и внутренней средой, к которой относятся генетические и фенотипические особенности, факторы окружающей среды (стресс, состояние микроклимата, различные радиационные облучения) и воздействие питательных веществ.

Все эти факторы, в том числе и корма, многообразно воздействуют на иммунную систему организма. Одни могут стимулировать и активизировать иммунные реакции и являются иммуномодуляторами, другие могут нарушать ее работу, то есть выступать в качестве имунносупрессоров.

Питание, являясь одним из важнейших факторов внешней среды, оказывают существенное влияние на организм, в том числе и на иммунную систему. Снижение неспецифической резистентности и иммунного статуса организма, несмотря на безупречное соотношение питательных веществ в корме и достаточную калорийность, указывает на то, что причины следует искать в качественной неполноценности рациона. Три разновидности неправильного кормления – голодание, недокорм и перекорм – оказывают непосредственное влияние на состояние иммунной системы. Неправильное неполноценное кормление может оказывать